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1.0 DESCRIPTION OF THE PROBLEM 

 

Stormwater discharge from roadways is a point source of pollution and thus subject to regulation under 

the NPDES permitting program. As a co-permittee along with municipalities, State DOTs must comply 

with Total Maximum Daily Load (TMDL) regulations for bacteria and nutrients and work towards 

achieving prescribed waste load allocations. TMDL is the maximum amount of a pollutant that a water 

body can receive without violating the water quality standards. In Delaware, nutrient loading to surface 

waters is one of the leading causes of water quality impairment. In order to meet water quality standards 

in the state's nutrient impaired waterways, TMDL regulations may require systematic reduction of point 

and non-point source discharges of nitrogen and phosphorus into these waterways - including those from 

roadways. Stormwater treatment technologies, such as detention ponds, can remove nutrients effectively. 

However, the increased nutrient removal required by TMDL regulations will be costly, since more real 

estate is required for increased treatment with existing technologies. New treatment technologies are 

needed that significantly reduce the footprint required for stormwater systems treating roadway runoff - 

which would result in significant cost reductions for State DOTs. 

 

Through a project supported by the Delaware Department of Transportation (DelDOT), an innovative 

technology that utilizes biochar and zero-valent iron (ZVI) to enhance the removal of nutrients from 

roadway runoff is under investigation at the University of Delaware. Preliminary results show significant 

(up to 50%) removal of ammonium and nearly complete removal of nitrate under laboratory conditions. A 

pilot scale field test was conducted at the end of 2014, which is expected to substantiate the laboratory-

observed removal rates. While the mechanism for ammonium removal by biochar has been explained, a 

fundamental understanding of how nitrate, the predominant form of nitrogen in stormwater, is removed in 

the treatment system is still lacking. Without such an understanding, pilot scale data cannot be rigorously 

interpreted and designs cannot be developed for full-scale systems. 

 

The objective of this project is to produce the data necessary to test the hypothesis that biochar can serve 

as an electron donor to support the microbial reduction of nitrate in stormwater treatment cells. Such data 

by themselves may be insufficient to completely elucidate the mechanisms for nitrate removal, but when 

combined with the pilot-scale data from the field study the data may yield an improved conceptual picture 

of nitrogen removal and provide (1) a path forward for full-scale design and testing, and (2) the baseline 

information needed to secure multi-year support for a complete assessment of this promising technology. 

 

 

2.0 APPROACH 

 

We selected the anaerobic bacterium Geobacter metallireducens for this research. This microorganism is 

ubiquitous in anaerobic subsurface and is known to respire humic substances, which have similar redox-

active functional groups as biochar. In addition, G. metallireducens can be acclimatized, or "trained", to 

utilize nitrate as an electron acceptor for growth. We chose a commercial wood-based biochar from The 

Biochar Company (thebiocharcompany.com). The biochar is also being used for a pilot-scale field study 

in Newark, Delaware. A series of laboratory batch experiments were carried out to evaluate the ability of 

the biochar to support nitrate degradation by G. metallireducens. 

 

 

3.0 METHODOLOGY 

 

3.1 Culture Propagation and Maintenance 
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3.1.1 Culture Growth and Maintenance: 

 
G. metallireducens was acquired from ATCC (product no. 53774) and propagated by transferring 0.5 mL 

of the anaerobically thawed pure seed culture to a 30 mL serum bottle containing 6 mL of Fe(III)-acetate 

growth medium. The serum bottle was then sealed with butyl rubber stopper and aluminum crimp cap and 

incubated at 30˚C until the medium color changed from amber to dark greenish (after about 12 days). The 

Fe(III)-acetate growth media (ATCC medium 1768, Appendix A) contained 13.7 g of Fe(III) citrate, 6.8 g 

of sodium acetate, 0.25 g of NH4Cl, 0.678 g of NaH2PO4·2H2O, 0.1 g of KCl, 2.5 g of NaHCO3, 10 mL of 

Wolfe's vitamin solution (ATCC MD-VS), and 10 mL Wolfe’s trace mineral solution (ATCC MD-TMS) 

in 1 L of distilled water. The medium was adjusted to a final pH between 6.8 and 7.0 and degassed using 

a N2:CO2 (80:20) gas mix. Typically, 1 L of growth medium was prepared and anaerobically transferred 

into multiple 125-mL serum bottles, each receiving 50-100 mL. During the filling process, the headspace 

of serum bottles were continuously purged with 80:20 N2:CO2 mix. Bottles were sealed with butyl rubber 

stoppers and aluminum crimps and then autoclaved for 15-20 min at 121˚C. The sterilized media in serum 

bottles were then stored at 4 ˚C if not immediately used. Before use, the sterilized media in serum bottles 

were purged with 80:20 N2:CO2 mix using a sterile disposable needle. 

 

For routine culture maintenance, 2 mL of liquid G. metallireducens culture grown on Fe(III)-acetate (iron 

G. culture) was transferred into 50 mL of freshly prepared Fe(III)-acetate medium, supplemented with 0.5 

mL of 413 mM cysteine-HCl solution (50 g/L, a reducing agent to consume trace O2 and maintain strictly 

anaerobic conditions). Culture transfer was carried out once every 8–10 days (Figure B1, Appendix B) at 

room temperature (20-22˚C) and two iron G. culture bottles were prepared in each transfer. All culture 

transfers were performed inside the anaerobic glove box (Coy, MI) using sterile disposable syringes and 

needles. Surface of rubber stoppers were sterilized with a 70% ethanol solution prior to injection. Serum 

bottles were wrapped with aluminum foil to minimize exposure to light during incubation. 

 

3.1.2 Establishment of a Nitrate-Degrading Culture 

 

After five transfers of the original iron G. culture, 10 mL of mature (greenish) iron G. culture was used to 

inoculate a 125-mL serum bottle containing 90 mL of anoxic nitrate-acetate growth medium.  The bottle 

was then incubated at 30 ˚C. The nitrate-acetate medium was the same as the Fe(III)-acetate medium 

except that Fe(III) citrate (55.9 mM) was replaced with sodium nitrate (20 mM) as the electron acceptor. 

Sodium acetate (82.9 mM) remained the sole electron donor in the medium. Initial attempts of developing 

nitrate-acetate G. culture were not successful; subsequently the growth medium was modified with higher 

quantities of NH4Cl  from 0.25 g (ATCC medium 1768) to 1.5 g (Lovley & Philipps, 1988), adjustment of 

pH to 6.8 (Chovanec et al. 2012), and addition of 1 mL of cysteine-HCl solution per 100 mL of medium. 

Figure B2 shows a successful transfer of iron G. culture into nitrate-acetate medium. 

 

Succeeding transfers were carried out in nitrate-acetate growth medium with a reduced amount of sodium 

nitrate (5 mM) and sodium acetate (10 mM) to control the pH and to optimize the use of growth medium. 

To maintain the nitrate G. culture 2 mL of mature culture was transferred to 50 mL of fresh nitrate-acetate 

medium supplemented with 0.4 mL of cysteine solution, and 0.1 mL of 0.22 µm-filtered medium solution 

containing Fe(II) from completely reduced iron G. culture medium. A minimum of 50 µM supplementary 

Fe(II) solution was necessary because G. metallireducens requires multi-heme cytochrome c for nitrate 

respiration (Senko and Stolz, 2001). The nitrate G. culture was incubated at room temperature and only 

one bottle was transferred on a weekly basis. One-week old nitrate G. culture would receive 0.5 mL of 1 

M nitrate stock solution and transferred after 2 weeks. Figure B3 shows examples of the nitrate G. culture. 

The changes in color and turbidity from clear to pinkish and cloudy after 5-7 days of incubation at room 

temperature indicate microbial growth. 
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3.1.3 Cell Suspension Preparation 

 

To prepare cell suspensions for batch experiments, 10 serum bottles, each containing 10 mL of nitrate G. 

culture (i.e. 10 % culture transfer), 90 mL of modified nitrate-acetate media, 0.8 mL of cysteine stock 

solution and 0.2 mL of filtered Fe(II) solution, were incubated at 30–32 C for 4 days. The cultures were 

periodically sampled to monitor acetate and nitrate concentrations in order to ensure that cells harvested 

were grown with a slight excess in nitrate (i.e. cells were in oxidized state). While inside the anaerobic 

glove box, the contents of the 10 serum bottles were transferred into 50 mL conical centrifuge tubes (i.e. 2 

centrifuge tubes per serum bottle) and screw caps were wrapped with yellow vinyl tape (Figure C1, 

Appendix C). The sealed tubes were centrifuged at 8,000 rpm for 15 min. Preliminary tests using blank 

media with resazurin (an indicator dye for detecting the presence of oxygen) showed this protocol would 

keep the culture suspension anaerobic during centrifugation. Blank medium was prepared in the same 

way as the nitrate-acetate growth medium except it contained no acetate, nitrate, or ammonium. The cell 

pellets were then concentrated into 12 tubes and resuspended using blank media with 0.25 mL of cysteine 

solution per 50 mL of culture suspension. The 12 tubes were centrifuged and then concentrated into four 

tubes, and the process was repeated until the cells were concentrated in one single tube.  The cell pellet in 

that tube was resuspended in 33 mL of blank media. Cell density of the suspension was determined by 

measuring the optical density of diluted suspension at 600 nm using a Cary UV/Vis spectrophotometer. 

The cell suspension was such that the measured absorbance at 600 nm was between 0.3 and 0.6 (within 

McFarland standards). Direct cell counting using a Hausser Scientific Bright-Line™ counting chamber 

was performed to confirm the applicability of the McFarland standard correlations between cell density 

and measured absorbance at 600 nm. 

 

3.2 Biochar Preparation 

 

Commercially produced biochar (Soil Reef) from hardwood chips through slow pyrolysis at 600˚C was 

purchased from The Biochar Company, PA. The physicochemical properties of the biochar are provided 

in Table 1.  The biochar was sieved to obtain a particle size between 250-500 μm. The biochar was then 

suspended in deionized (DI) water in a 1000 mL Erlenmeyer flask at a concentration of ~50 g of biochar 

per L of DI water. In order to oxidize the redox-labile functional groups in the biochar, the suspension 

was aerated with low-pressure air for days, after which it was left to settle for 4–10 hrs (Figures D1 and 

D2, Appendix D). During aeration, 0.2–0.5 mL of 6N H2SO4 was added every 0.5–1 hr until the total 

volume added was 6 mL. The pH of the biochar suspension was monitored after acid addition to make 

sure the pH remained around 7.0. After particle settling, the suspension was decanted and water replaced 

with clean DI water. Colloidal particles that did not settle were removed along with the decanted waster. 

The aeration and settlement cycle was repeated until the suspension had been aerated for a total of 

approximately 60–70 hours and had been washed with 2000–2500 mL of DI water. The biochar was then 

vacuum filtered and placed onto separate aluminum foil trays (Figure D3, Appendix D). The trays were 

weighed and repeatedly dried inside a vacuum oven at 55–65 C until the biochar mass remained constant 

(i.e. all moisture had been removed, Figure D4, Appendix D). The dry oxidized biochar was then stored at 

room temperature in a glass container wrapped in aluminum foil. A total of ~70 g of dry oxidized biochar 

was produced from 3 flasks of biochar suspensions. 

 

3.3 Sample Collection and Analysis 

 

Samples were collected at per-determined times during the course of a batch experiment for measurement 

of NH4
+ and three anions, acetate, nitrite, and nitrate. All liquid sampling from the serum bottles was done 

under strict protocol to prevent microbial contamination and oxygen infusion. The rubber stopper of each 
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bottle was always sterilized with Kimwipe soaked in 70% ethanol prior to sampling. The glass sampling 

syringe used had a sterile disposable 21G needle and was filled and flushed twice with an 80:20 N2:CO2 

gas mix. The syringe was then emptied and immediately inserted into the stopper for sample collection.  

A 1-mL sample was drawn from each bottle and diluted 10 folds with DI water in a 10-mL volumetric 

flask (Figure E1, Appendix E). After mixing, the diluted sample was immediately filtered with a 25 mm 

diameter syringe filter (0.22-μm MCE, Millex-GS) and transferred into two separate plastic vials (1.5 mL 

for NH4
+ analysis and 8 mL for anions analysis). Filtered liquid samples were stored at 4˚C for 1-2 days if 

ion chromatography (IC) analysis could not be performed immediately after sampling. 

 

Acetate, nitrite and nitrate analyses were performed using a Metrohm 850 Professional IC AnCat unit. 

The mobile phases were a mixture of Metrohm MPak A Supp 5 (3.2 mM sodium carbonate, 1.0 mM 

sodium bicarbonate) and 6.5 % v/v acetone at a flow rate of 0.7 mL/min and the column oven was set at 

28˚C. The concentrations of acetate, nitrite and nitrate were detected using 887 Professional UV-vis 

detector and quantified using MagIC Net analytical software. NH4
+ analysis was conducted using a 

Dionex IC (ICS-1100) equipped with an Ion PAC CS16 (5 x 250 mm). The mobile phase was 38 mN 

sulfuric acid at 1 mL/min. The concentrations of NH4
+ were detected using a conductivity detector and 

quantified using Chromeleon 7.0 software. 

 

Prior to each experiment, standard calibration curves for NH4
+, acetate, nitrite and nitrate were established 

from individual stock solutions prepared in blank media (containing sodium bicarbonate buffer, vitamins, 

KCl, and trace minerals at pH 6.8). One mL sample from various individual stock solutions was diluted 

10 folds with DI water to prepare standard solutions (between 0.1 and 1.0 mM) of ammonium chloride, 

sodium acetate, sodium nitrate, and sodium nitrite. Samples were taken from the standard solutions for IC 

analyses in order to create calibration curves (see Figures F1–F4, Appendix F). For quality control and 

assurance purposes, each batch of samples analyzed by IC also included 10-fold DI water-diluted samples 

of 2.5 mM standard solutions of ammonium chloride, sodium acetate, sodium nitrite, and nitrate. 

 

3.4 Experiment 1: Biochar as Electron Acceptor to Support G. metallireducens 

 

A batch experiment with two different masses of oxidized biochar (2 g and 4 g) and nitrate culture cell 

suspension was set-up in triplicates in 125 mL serum bottles with 100 mL of blank media plus 0.5 mL of 

cysteine stock solution. Additional triplicate bottles were set up to serve as controls: abiotic control, with 

2 g oxidized biochar only, biotic control with cells only, and blank control with medium only. In this 

experiment, air-oxidized biochar served as a metabolic electron acceptor for G. metallireducens to utilize 

the added acetate as electron donor. 

 

Prior to the experiment, the weight of each of the serum bottles with oxidized biochar (6 bottles with 2 g 

of biochar and 3 bottles with 4 g of biochar) was recorded. The bottles were then wrapped with aluminum 

foil and placed inside a vacuum chamber for 3 cycles of vacuum and flushing with N2 gas. The degassed 

serum bottles were then sealed with rubber stoppers and aluminum crimps inside the glove box. To make 

sure that the biochar micro-pores were completely anaerobic, the serum bottles were individually 

vacuumed using a sterile needle and a vacuum pump. The degassed serum bottles were kept under 

vacuum condition for 60 hrs inside a vacuum chamber and then individually flushed with 80:20 N2:CO2 

gas mix. 

 

The degassed serum bottles with biochar were brought inside the glove box and the crimps and stoppers 

were removed. One hundred mL of blank medium at pH 6.8 was added to each bottle using disposable 

sterile pipettes (Figure G1, Appendix G). The pH of the blank medium used for bottles with 2 g and 4 g 

biochar had been previously adjusted to 6.7 and 6.5, respectively using HCl. Preliminary tests were done 
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to determine the pH adjustments to the blank media such that the equilibrium pH with biochar would be 

approximately 6.8. All of the 15 serum bottles were amended with 0.5 mL of 50 g/L cysteine solution to 

eliminate trace amounts of oxygen. Three mL of the concentrated G. metallireducens cells (ca. 4 x 1010 

cells/mL) were added to each of the biotic serum bottles using disposable sterile pipettes (Figure G2, 

Appendix G). All 15 serum bottles were then re-sealed with new stoppers and crimps and brought outside 

of the glove box (Figure G3, Appendix G). The headspace of each bottle was flushed for 30 seconds with 

an 80:20 N2:CO2 gas mix. The bottles were transferred back inside the glove box, and 0.4 mL of 1 M 

sodium acetate solution was added to each bottle using a syringe, marking the start of the experiment. 

 

Immediately after, each bottle was swirled to mix its content and then brought outside the glove box for 

incubation at 30–32 ˚C. Liquid samples were taken at 3, 8, 18, 24, 39, 48, 72, 96, 120 144 hrs following 

procedure described in Section 3.3. To make sure that replicate bottles had the same incubation period, 

the triplicate bottles in each treatment or control group was taken in and out of the incubator at the same 

time. Every after 3 sampling times, the head space of the serum bottles were flushed with an 80:20 

N2:CO2 gas mix to replace the liquid volume taken out.  Liquid samples were analyzed for NH4
+, acetate, 

nitrite, and nitrate. 

 

3.5 Experiment 2: Microbially Reduced Biochar as Electron Donor for Nitrate Reduction 

 

The second batch experiment was set-up immediately after the biochar-acetate experiment. In this 

biochar-nitrate experiment, microbially reduced biochar was the electron donor when G. metallireducens 

metabolically utilized the added nitrate as electron acceptor. 

 

Biotic serum bottles with 4 g biochar from experiment 1 were carried over to the second batch experiment 

as biotic biologically-reduced biochar group. To replenish the liquid volume removed, these biotic serum 

bottles with biochar were refilled with ~9.5 mL of pH 6.8 blank medium. Additional sets of experimental 

bottles (abiotic 4g oxidized biochar and cells only) were set up in triplicates as described previously. Cell 

suspension of concentrated G. metallireducens cells (8 x 109 cells/mL) was prepared but only used for 

cells-only bottles. Biologically reduced biochar bottles with cells were not re-inoculated with Geobacter 

cells. All 9 serum bottles contained 100 mL blank media, 0.5 mL cysteine HCl stock solution and 0.8 mL 

of 588.4 mM sodium nitrate stock solution and were incubated at 30–32˚C. Liquid samples were taken at 

3, 8, 18, 24, 39, 48, 72, 96, 120 144 hrs to quantify NH4
+, acetate, nitrite, and nitrate. Sampling and 

analytical protocols observed in the previous batch experiment were also implemented in the second batch 

experiment. 

 

 

4.0 FINDINGS 

 

4.1 Biochar as Electron Acceptor to Support G. metallireducens 

 

Within the first 72 hours, 60 - 80 % of initial acetate concentrations in biotic serum bottles with oxidized 

biochar were removed while negligible change in acetate concentrations were observed in abiotic (media 

plus oxidized biochar and acetate) and biotic (media plus cells and acetate) control bottles (Figure 1). This 

supports the hypothesis that G. metallireducens can utilize oxidized biochar to metabolize acetate, and 

that bacterial activity alone was predominant of all possible processes that could consume/remove acetate 

from solution (e.g. sorption). Figure 1 also shows that G. metallireducens could not utilize acetate as 

electron donor without biochar, since acetate concentrations in biotic control bottles remained practically 

constant within 72 hrs. After 72 hrs, however, acetate concentrations in control bottles started to decrease 

while in biotic bottles containing biochar acetate concentration started to increase. 
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4.2 Microbially Reduced Biochar as Electron Donor for Nitrate Reduction 

 

The effect of microbially reduced biochar on nitrate utilization is illustrated in Figures 2 and 3. Without 

addition of biochar, nitrate removal was limited, which occurred only initially and ceased upon depletion 

of residual electron donor(s) carried over from the inoculum. Inclusion of pre-reduced biochar sustained 

nitrate removal by G. metallireducens beyond the first two days, and complete consumption of nitrate was 

observed only when reduced biochar was present (Figure 3). 

 

The SEM images of G. metallireducens used in these experiments, harvested from the acetate-nitrate 

medium and the acetate-iron oxide system are shown in Figure 4. 

 

 

5.0 CONCLUSIONS 
 

The batch experimental data clearly illustrate that the commercial biochar can act as both a reducing agent 

and an oxidizing agent to support the activities of anaerobic microorganisms such as G. metallireducens, 

including the oxidation of organic substrates (e.g., acetate) and the reduction of electron acceptors such as 

nitrate.  Under similar conditions such as in saturated and anaerobic bioretention cells containing soil and 

biochar, microorganisms capable of reducing nitrate can do so using biochar as an electron source, which 

would result in faster and more complete removal of nitrate from stormwater. 

 

In addition to the research described above, this project provided research opportunities (with or without 

financial support) for a number of undergraduate and high school students: 
 

Name School / Program Time Involved Funding Source 

Robert Rose UD Env. Engineering summer 2014 CAIT ($1,500) & NSF EPSCoR 

Naomi Chang UD Env. Engineering spring 2014 DWRC fellowship 

Chris Youngquist UD Env. Engineering summer + fall 2014 DWRC fellowship 

Jing Jin UD Env. Engineering spring 2014 volunteer 

Jillian Allen UD Env. Engineering winter + spring 2014 DENIN scholarship 

Lyndsay Fagan UD Env. Engineering winter + spring 2014 DENIN scholarship 

Sangwon Jeon UD Bio/Chemistry winter + spring 2014 independent study 

Zelin Zhang DTCC Chemistry/Math summer 2014 NSF EPSCoR 

Jared Saquing Wilmington Charter summer 2014 UD CoE HS internship 

Sriram Cyr Wilmington Charter summer 2014 UD CoE HS internship 

 

This project also provided indirect support (supplies and travel money) for two University of Delaware 

Ph.D. students funded on fellowships: Lauren S. Lechner and Jing Tian. 
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One conference paper resulted from this work: Tian, J., Yi, S., Imhoff, P., Chiu, P., Guo, M., Maresca, 

J., Beneski, V., and Cooksey, S. (2014) Biochar-Amended Media for Enhanced Nutrient Removal in 

Stormwater Facilities. World Environmental and Water Resources Congress 2014: pp. 197-208. doi: 

10.1061/9780784413548.022. 

 

This work was presented in an oral presentation at the ASCE World Environmental and Water Resources 

Congress 2014: Water Without Borders, June 2014. In addition, several seminars and public lectures have 

resulted from this project: 

 

 UTC Brown Bag seminar "Enhancing Nitrogen Removal in Stormwater Facilities for Transportation" 

presented by a graduate student, Ms. Jing Tian, on 3/11/14; 

 Presentation at Delaware Department of Transportation Forum, "Integrating Zero-Valent Iron and 

Biochar Amendments in Green Stormwater Management Systems for Enhanced Treatment of 

Roadway Runoff" on May 7, 2014; 

 A public lecture in the Environmental Frontier Seminar Series, "Microbial Nitrate Removal Promoted 

by Zero-Valent Iron and Black Carbon (Biochar)" on December 8, 2014. 

 

This project has involved multiple participants and collaborating organizations, including 

 

 Dr. Qizhong (George) Guo, Department of Civil and Environmental Engineering, Rutgers, The State 

University of New Jersey 

 Delaware Environmental Institute (DENIN), University of Delaware 

 Charles H. Hegberg, reGenesis Consulting Services, LLC 

 The Biochar Company (http://thebiocharcompany.com/) 

 Dr. Marianne Walch, Environmental Scientist, Delaware Department of Transportation (DelDOT), 

Stormwater Quality Program 

 

Finally, the ideas and preliminary results from this work were used to help write three research proposals 

submitted in 2014, all three of which were funded: 

 

 National Fish and Wildlife Foundation, Chesapeake Bay Innovative Nutrient and Sediment Reduction 

2014 Program, "Reducing Stormwater Volume and Nutrients with Biochar", $316,349, 12/2014-

11/2016; 

 Transportation Research Board, NCHRP IDEA Program, "Reducing Stormwater Runoff and 

Pollutant Loading with Biochar Addition to Highway Greenways", $129,000, 3/2015-2/2017; 

 Mid-Atlantic Transportation Sustainability Center, "Simultaneous Removal of Nitrogen and 

Phosphorus from Stormwater by Zero-Valent Iron and Biochar in Bioretention Cells", $149,999, 

1/2015–6/2016. 

 

 

6.0 RECOMMENDATIONS 
 

In a bioretention cell, the biochar-promoted microbial reduction of nitrate is expected to be particularly 

pronounced if a significant saturated (anaerobic) region is included in the cell design, and if a reducing 

agent (e.g., zero-valent iron) is provided as an exogenous electron source.  This study provides empirical 

data that support the proposed enhancement mechanism as well as knowledge that can guide future design 

and implementation of field-scale stormwater treatment systems. While this work represents an important 

step toward developing a robust and sustainable technology to mitigate the stormwater nutrient problem 

in a cost-effective manner, larger and longer-term funding will be necessary to bring this new, exciting 

technology to maturity and broad deployment. 
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Table 1. Physicochemical properties of the biochar. 

Parameters Units Valuesa Method 

pH  8.71b 1:20 w/v in DI water, 24 h mixing 

Electrical Conductivity (EC 20 w/w) mmhos cm-1 283 4.11 USCC:dil. Rajkovich 

Total Ash % of total mass 21.4 ASTM D-1762-84 

particle density g cm -3 1.816b  

N2-BET surface area m2 g-1 338c  

Organic Carbon (org-C) % of total mass 74.2 Dry Combustion-ASTM 4373 

Total Nitrogen (N) % of total mass 0.59 Dry Combustion-ASTM 4373 

Hydrogen/Carbon (H/C) Ratio  0.26 Dry Combustion-ASTM 4374 

Liming (neutral value as CaCO3) % CaCO3 14.7 Rayment & Higinson 

Total Potassium(K) mg/Kg dry mass 3566 Enders & Lehman 

Available K mg/Kg dry mass 4034 Wang after Rajan 

Total Phosphorous(P) mg/Kg dry mass 2528 Enders & Lehman 

Available P mg/Kg dry mass 1608 Wang after Rajan 

Total N mg/Kg dry mass 0.59 KjN 

Ammonia (NH4-N) mg/Kg dry mass 4.1 Rayment & Higinson 

Nitrate (NO3-N) mg/Kg dry mass 63 Rayment & Higinson 

Organic (Org-N) mg/Kg dry mass 5800 calculated 

Volatile Matter % dry mass 79 ASTM D-1762-84 

Arsenic (As) mg/Kg dry mass 1.4 EPA 3050B/EPA 6010 

Cadmium (Cd) mg/Kg dry mass <0.01 EPA 3050B/EPA 6010 

Chromium (Cr) mg/Kg dry mass 11 EPA 3050B/EPA 6010 

Cobalt (Co) mg/Kg dry mass 1.3 EPA 3050B/EPA 6010 

Copper (Cu) mg/Kg dry mass 24 EPA 3050B/EPA 6010 

Lead (Pb) mg/Kg dry mass 3 EPA 3050B/EPA 6010 

Molybdenum (Mo) mg/Kg dry mass 0.22 EPA 3050B/EPA 6010 

Mercury (Hg) mg/Kg dry mass <0.2 EPA 7471 

Nickel (Ni) mg/Kg dry mass 5.1 EPA 3050B/EPA 6010 

Selenium (Se) mg/Kg dry mass <0.3 EPA 3050B/EPA 6010 

Zinc (Zn) mg/Kg dry mass 15 EPA 3050B/EPA 6010 

Boron (B) mg/Kg dry mass 40 TMECC 

Chlorine (Cl) mg/Kg dry mass 325 TMECC 

Sodium (Na) mg/Kg dry mass 465 EPA 3050B/EPA 6010 

aThe Biochar Company data; bmeasured; cTeixido et. al, 2013. 
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Figure 1. (A) Measured and (B) relative acetate concentrations as a function of time in serum bottles filled 

with media only (blanks), media plus G. cells, media plus 2 g of oxidized (oxi) biochar (bc) (abiotic 

control), media plus 2 g of oxidized biochar and G. cells (biotic), and  media plus 4 g of oxidized biochar 

and G. cells. R1, R2, and R3 refer to triplicate bottles.  
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Figure 2. Measured nitrate concentrations as a function of time in serum bottles filled with media plus G. 

cells, media plus 4 g of oxidized (oxi) biochar (bc) (abiotic control), and media plus 4 g of biologically-

reduced biochar plus carried over cells from experiment 1 (biotic). 

 

Figure 3. Measured nitrate concentrations as a function of time in serum bottles filled with media plus 2 g 

of oxidized (oxi) biochar (bc) (abiotic control), media plus 2 g of oxidized biochar and G. cells (biotic) 

and media plus 2 g of biologically-reduced biochar from preliminary experiment 1 plus G. cells (biotic).  
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Figure 4. SEM images of Geobacter metallireducens from an acetate- and nitrate-fed aqueous culture (top 

panels) and an acetate- and iron oxide (hematite, a ferric oxide) culture collected from the solution phase 

(bottom left panel) and the solid phase (bottom right panel), respectively.
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Appendix A 

ATCC medium: 1768 Geobacter metallireducens Medium  
Ferric citrate (Sigma F-6129).......................13.7 g  
Wolfe's Vitamin Solution (see below)..........10.0 ml  
Wolfe's Mineral Solution (see below)..........10.0 ml  
NaHCO3 .......................................................2.5 g  
NH4Cl ...........................................................0.25 g  
NaH2PO4 . H2O.............................................0.6 g  
KCl................................................................0.1 g  
Sodium acetate.............................................6.8 g  
Distilled, deionized water............................1.0 L  
 
Heat about 400 ml of water on a hot stir plate to near boiling. Add ferric citrate, allow it to dissolve, then cool the 
solution to room temperature in a slurry of ice. Add 400 ml of water; this quickly cools the medium to room 
temperature. Adjust the pH to 6.0 using 10 N NaOH; when the pH approaches 5.0, add NaOH by drops until the pH 
level is established. Approximately 6 ml of 10 N NaOH per liter will be needed per liter of medium. Add the 
remaining ingredients and bring the final volume up to 1.0 L with water. Bubble the medium with 80% N2 and 20% 
CO2. The final pH should be 6.8-7.0.  
Do not expose this medium to sunlight.  
 
Wolfe's Vitamin Solution:  
Available from ATCC as a sterile ready-to-use liquid (Vitamin Supplement, catalog no. MD-VS).  
Biotin..............................................2.0 mg  
Folic acid........................................2.0 mg  
Pyridoxine hydrochloride..............10.0 mg  
Thiamine . HCl...............................5.0 mg  
Riboflavin.......................................5.0 mg  
Nicotinic acid.................................5.0 mg  
Calcium D-(+)-pantothenate.........5.0 mg  
Vitamin B12....................................0.1 mg  
p-Aminobenzoic acid....................5.0 mg  
Thioctic acid..................................5.0 mg  
Distilled water................................1.0 L  
 
Wolfe's Mineral Solution:  
Available from ATCC as a sterile ready-to-use liquid (Trace Mineral Supplement, catalog no. MD-TMS.)  
Nitrilotriacetic acid................1.5 g  
MgSO4 . 7H2O .......................3.0 g  
MnSO4 . H2O ........................0.5 g  
NaCl......................................1.0 g  
FeSO4 . 7H2O .......................0.1 g  
CoCl2 . 6H2O ........................0.1 g  
CaCl2 ....................................0.1 g  
ZnSO4 . 7H2O .......................0.1 g  
CuSO4 . 5H2O .......................0.01 g  
AlK(SO4)2 . 12H2O.................0.01 g  
H3BO3 ....................................0.01 g  
Na2MoO4 . 2H2O....................0.01 g  
Distilled water........................1.0 L  
Add nitrilotriacetic acid to approximately 500 ml of water and adjust to pH 6.5 with KOH to dissolve the compound. 
Bring volume to 1.0 L with remaining water and add remaining compounds one at a time.  
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Appendix B 

Geobacter metallireducens 

 

 

Figure B1. G. metallireducens grown in iron(III)-acetate medium, with iron(III) as the electron acceptor 

and acetate as the electron donor. When inoculated, the medium turned from amber to dark green as 

iron(III) was biologically reduced to iron(II). 

 

 

 

Figure B2. G. metallireducens grown in the Fe(III)-acetate medium were transferred to a modified 

growth medium with nitrate as the electron acceptor and acetate as the electron donor to establish a 

nitrate-utilizing G. metallireducens culture (nitrate G. culture). 
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Figure B3. G. metallireducens grown in nitrate-acetate medium, with nitrate as an electron acceptor 

and acetate as an electron donor. When inoculated, the medium turns from clear to slightly cloudy 

and pinkish.  
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Appendix C 

Cell Suspension Preparation 

 

    

 

 

 

Figure C1. Concentration of G. metallireducens cells by centrifugation. 
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Appendix D 

Biochar preparation 

 

Figure D1. Sieved biochar, particle size range 0.25-0.50 mm. 

 

 

 

Figure D2. Oxidation of biochar by aeration in deionized water. 
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Figure D3. Vacuum filtration of biochar suspension. 

 

 

 

 

 

 

Figure D4. Vacuum drying of pre-treated biochar. 
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Appendix E 

 

 

Figure E1. Paraphernalia for sample dilution. 
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Appendix F 

IC Standard Calibration Curves 

 

 

Figure F1. Acetate calibration curve. 

 

 

Figure F2. Nitrite calibration curve. 
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Figure F3. Nitrate calibration curve. 

 

 

 

 

Figure F4. NH4+ calibration curve. 
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Appendix G 

Experimental Procedures 

 

 

 

Figure G1. Preparation of serum bottles with 100 mL of blank media (containing no sodium acetate or 

sodium nitrate). 
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Figure G2. Adding concentrated G. metallireducens cells to serum bottles. 

 

 

 

  

 

Figure G3. Sealing the serum bottles with rubber stoppers and aluminum crimps. 

 

 


